Показать сообщение отдельно
Старый 01.11.2002, 01:37     # 1
Unforg1ven
::VIP::
 
Аватар для Unforg1ven
 
Регистрация: 02.03.2002
Адрес: в Кремле
Сообщения: 4 674

Unforg1ven Популярный человек на этом форумеUnforg1ven Популярный человек на этом форумеUnforg1ven Популярный человек на этом форумеUnforg1ven Популярный человек на этом форумеUnforg1ven Популярный человек на этом форумеUnforg1ven Популярный человек на этом форумеUnforg1ven Популярный человек на этом форумеUnforg1ven Популярный человек на этом форуме
Эволюция матрицы

Матрица: эволюция

Автор: Андрей Сокольников
Опубликовано в журнале "Компьютерра" №10 от 15 марта 2005 года.


Сейчас, в начале 2005 года, практически ни у кого не возникает сомнений в победе жидкокристаллической технологии — и над традиционной ЭЛТ, и над маргинальными плазменными, электролюминесцентными или OLED-панелями. Минувший год ознаменовался уравниванием объема продаж ЖК- и ЭЛТ-мониторов: пересечена или вот-вот будет пересечена формальная точка невозвращения...

Будучи в фаворе мэйнстрима, ЖК-технологии кипят и клокочут на печках, топимых несметными капиталами ТНК, выплескивают новые и новые достижения по всем ключевым для плоских панелей позициям. Конкурирующие способы отображения информации под жестким давлением ЖК маргинализуются и выдавливаются в специфические ниши, выбраться из которых в ближайшие годы (а для ЭЛТ — навсегда) им невмочь.

ЖК-технологии не являют собой что-то однородное, скорее это конгломерат решений, объединенных общим принципом. Можно рассматривать разнообразие актуальных подходов, как свидетельство интенсивного развития в этой области. Однако сие также значит, что отсутствует всеохватное решение принципиальных проблем, связанных с ЖК-панелями. В этом скромном обзоре мы постараемся обрисовать основы работы, преимущества и недостатки современных типов матриц, а также затронем перспективные новшества, касающиеся их всех.

Свет с винтом

Как известно, ЖК-дисплеи обладают особенностью, не позволяющей поставить их в один ряд с другими электронными средствами отображения: жидкие кристаллы не излучают свет сами, а могут лишь пропускать или не пропускать его, являясь частью замысловатых заграждений на его пути и работая, как затвор. Принцип действия ЖК основан на явлении поляризации света, должном быть знакомым многим из школьного курса физики.

Представим себе простейшую матричную ЖК-панель с подсветкой. Это многослойная конструкция, с задней ее стороны находится флуоресцентная лампа (или несколько ламп) и зеркало (система зеркал) для равномерного рассеивания света по поверхности. На пути стоит поляризационный фильтр (поляроид, или, если угодно, поляризатор), пройдя через который, свет попадает на слой из множества капелек ЖК, организованных в ячейки. Каждый пиксел изображения состоит из одной (в монохромном или черно-белом дисплее) или более (в цветном дисплее) ячеек. Далее идет второй поляроид, повернутый относительно первого (обычно в схемах представляют, что на 90 градусов, хотя теоретически это может быть и другой угол).

Теперь начинается интересное. Не будь между поляроидами ничего — свет бы полностью задерживался (теоретически), потому что они поляризуют свет в несовпадающих (для простоты представления — перпендикулярных) плоскостях. Но кристалл между ними поляризует свет, поворачивая вектор таким образом, что, подходя ко второму поляроиду, свет выходит наружу.

В чем тут фокус? Большинство молекул в жидком кристалле имеют прутковую (вытянутую) форму. В описываемой технологии нематический (используемые в дисплеях термотропические ЖК подразделяются на изотропические с хаотичным распределением молекул и структурированные нематические) кристалл с обеих сторон зажат между специальными пленками. Они задают направление, в котором в спокойном состоянии укладываются продолговатые молекулы. Каждая из пленок покрыта мельчайшими засечками (директорами), одинаково сориентированными по направлению с поляроидом, к которому она прижата. «Лежащие на боку» молекулы ЖК у противоположных поляроидов оказываются перпендикулярными друг другу, по мере сближения — все более повернутыми в сторону плоскости поляризации оппозитного поляроида, а в итоге образуют спираль, по которой сворачивается плоскость поляризации света. Это называется скрученным нематическим кристаллом (Twisted Nematic, TN).

Если к ЖК попадает в электрическое поле, его молекулы выстраиваются между электродами подобно тому, как металлические опилки выстраиваются в поле магнитном. Электроды расположены по обе стороны от кристалла, поэтому поле разворачивает длинные молекулы вдоль силовых линий. Чем сильнее разность потенциалов между электродами, тем меньше поворот вектора поляризации, производимый ЖК. И тем меньше света выходит из второго поляроида наружу. Когда разница потенциалов усиливается настолько, что отклонения вовсе не происходит, точка становится черной (прутковые молекулы вытягиваются между поляроидами и больше не влияют на поляризацию света).
Издалека долго
Жидкие кристаллы были открыты в 1888 году австрийским ботаником (в смысле ученым, занимающимся флорой) Фридрихом Рейницером в процессе изучения значения холестерина в растениях. Он выделил некое вещество (совсем уж любознательным, так и быть, скажу: метоксибензилидин бутиланалина), странным образом ведшее себя при нагревании — оно мутнело и начинало течь раньше (145,5°), чем обращалось в истинную жидкость (178,5°). Субстанцию с секретом Рейницер вручил германскому физику Отто Леману, который уличил ее в еще одной эксцентричности: жидкость в своих оптических свойствах вела себя как кристалл. Так в науку, благодаря синкретическому соитию гениев разных отраслей знания, вошло грандиозное изобретение под названием «жидкий кристалл» (термин Лемана; ЖК — это так называемая мезофаза, состояние между твердым и изотропным жидким состояниями вещества: оно и текуче, и сохраняет порядок расположения молекул; в нашем случае состояние устойчиво в большом диапазоне температур). Изобретение, к сожалению, совершенно бесполезное на практике. Ходят кривотолки, будто первочеловек когда-то взял никчемную палку, повертел ее в своих волосатых сиволапах, а привело это впоследствии к пилотируемым полетам на Луну и автоматическим на Марс. Мы сочтем за благоразумие не рассуждать о правдивости всей этой молвы, однако, в правдоподобии ей не откажешь: есть в человеческом характере повадка приходовать напрасно валяющиеся вещи. Текучее вещество впервые пристроили к делу через восемьдесят лет после открытия: компания RCA (Radio Corporation of America) произвела на свет чудо — первый в мире стабильно функционирующий ЖК-дисплей. Во второй половине 70-х гг. технология начала активно внедряться в портативных устройствах — главным образом, калькуляторах и цифровых часах. Это всем известные дисплеи с ограниченным набором сегментов изображения на каждой позиции, позволявшие показывать некое подобие арабских цифр. Ясно, что развитие пошло по пути усложнения дисплеев так, чтобы стало можно адресно зажигать (или гасить) одну маленькую точку из ячеистой матрицы, формируя тем самым сложное изображение.
Виньетка в клетку

К каждому элементу изображения подводится по два электрода (общий и управляющий). Пока количество элементов сравнительно мало (например, сегменты всех цифр в индикаторе калькулятора), такой подход оправдан из-за своей простоты. Однако для матричного дисплея это просто неприемлемо — даже у простейшего монохромного экрана с разрешением 160x120 ячеек насчитывается немногим меньше двадцати тысяч… Поэтому были применены матрицы (сетки) управляющих электродов и мультиплексирование управляющего сигнала.

Очевидный недостаток тут в том, что прорисовка изображения неимоверно медленна, поскольку картинка строится «ягодка к ягодке». Чтобы изображение не мерцало, приходилось специально выбирать кристаллы с низким временем отклика. Медлительность матрицы впоследствии уменьшили путем наращивания количества управляющих электродов: матрицу стали разбивать на несколько независимых полей развертки.


Тонко регулируя вольтаж, подаваемый на элементы, можно заставить их пропускать большее или меньшее количество света — так получаются градации серого. В цветных дисплеях ячейки — это субпикселы, а каждый пиксел состоит из трех зафильтрованных (R, G, B) элементов. Белый и серые оттенки формируются подачей света в равных пропорциях сквозь все три фильтра.

Классическая TN-технология почти не использовалась на практике, в реальных масштабах (ноутбуки) пассивная матрица стала употребляться с приходом STN — улучшенного вариана TN. Здесь ЖК разворачивает поток света на больший угол — до 360 градусов. Увеличенный разворот предполагает повышенную разность между напряжениями включения и выключения ячейки. Это позволяет поднять коэффициент мултиплексирования управляющего сигнала (читай: число управляемых ячеек в строке) — у TN он был не выше 16. Затем появились DSTN-матрицы, в которых свет проходил через две сложенные «лицом к лицу» ячейки STN. Только с DSTN удалось добиться контрастности, достаточной для создания цветных экранов (кои вскорости и возникли). Но выстрелом «Авроры», ознаменовавшим начало полномасштабного штурма наших кошельков производителями ЖК-дисплеев, стало появление активных матриц.
Костер на льду
Поликристаллическим кремнием называется материал, состоящий из большого числа микроскопических (от 0,1 до нескольких микрон) кристаллов кремния. Обычная технология его изготовления при производстве полупроводников состоит из двух этапов — химического осаждения из газовой фазы при пониженном давлении (LPCVD) и кристаллизации твердой фазы (SPC). При этом второй процесс (отжиг) проходит при температурах выше 900 °С, что неприемлемо при производстве ЖК-панелей, поскольку температура плавления стекла примерно на треть ниже. (Можно использовать кварцевую подложку, но при сколько-нибудь больших диагоналях — это зверски дорогое развлечение). Ясно, что взамен второй фазы необходимо каким-то хитрым способом извернуться и кристаллизовать кремний при такой температуре, когда стекло еще не плавится. Назовем три из них — MIC, Cat-CVD и ELA. При технологии MIC пленка перед отжигом металлизируется, что позволяет кристаллизовать кремний при температурах порядка 500 °C. Технология Cat-CVD позволяет осаждать на подложке уже кристаллизованный кремний (температура — около 300 °C). Наконец, самый распространенный метод — ELA (лазерный отжиг). Здесь аморфный кремний с пониженным содержанием водорода расплавляется эксимерным лазером и после этого кристаллизуется (температура — около 400 °C). LTPS чрезвычайно важен и для OLED-панелей, которым сулят фантастические перспективы в качестве альтернативы ЖК. Помимо рассмотренных способов производства LTPS в настоящее время испытываются и другие; основное направление разработок — поиск недорогой технологии, позволяющей создавать большие ЖК-панели.
Танго втроем

TN+Film TFT


Самой первой (и присно здравой) технологией производства активных матриц явилась TN+Film TFT. Это все те же твист-нематические кристаллы, а «Film» означает, что экран сверху покрыт специальной пленкой с высоким показателем преломления для увеличения угла обзора. Революционна не она, а сам способ срабатывания ячеек. Технология тонкопленочных транзисторов (Thin Film Transistor, TFT) позволила назначить каждому из субпикселов переключающий транзистор, конденсатор и резистор. Теперь, когда по выбранной строке и столбцу подается управляющее напряжение, оно попадает в конденсатор и заряжает его. Поскольку не интересующие нас соседние ячейки закрыты транзисторами, влияния на них (как в обычной TN) почти нет. Заряд, посланный конденсатору, хранится до следующего цикла обновления (которое происходит с частотой, скажем, 60 Гц), постепенно разряжаясь через параллельно подключенное сопротивление. Другими словами, к каждому элементу теперь приставлен часовой, который запоминает состояние ячейки после того как напряжение извне больше не подается, и блокирует ее до новых прямых указаний.

Такие TN-матрицы применяются по сей день, причем они являются наиболее распространенными из-за относительной простоты производства и дешевизны. Кроме того, среди современных типов матриц они зачастую обладают наименьшим временем отклика, поэтому бывают востребованными публикой, падкой на этот параметр.

Дальше идут недостатки, которые очень медленно и мучительно сглаживаются производителями:
  1. При подаче максимального напряжения крайне сложно поставить молекулы строго перпендикулярно поляризационным фильтрам, поэтому черный цвет оказывается белесым. А чем выше уровень черного, тем ниже контрастность. Прогресс в изживании недостатка движется: за последние годы отношение контраста TN-матриц заметно (в разы) увеличилось.
  2. Если какой-либо элемент выходит из строя (сгорает транзистор), то на его месте остается ярко горящая дырка. Эта неприятность, похоже, неустранима в рамках технологии.
  3. Небольшие углы обзора. Здесь улучшения в последнее время налицо — в горизонтальном направлении углы можно назвать приемлемыми, хотя при взгляде сверху, снизу и, особенно, по диагонали перепады остаются существенными.
  4. Жутковатая цветопередача.

На последнем пункте хотелось бы заострить внимание, поскольку он был существенным толчком к дальнейшему развитию ЖК-технологий. Подавляющее большинство TN-матриц — 18-разрядные, поэтому выводить 24-битный или, того пуще, 32-битный цвет они по природе не в состоянии. Недостающие цвета воспроизводятся хитрым финтом: при помощи технологии FIC (Frame Rate Control), которая попеременно, кадр за кадром выводит оттенки, в среднем дающие требуемый. Человеческий глаз из-за своей инертности не успевает ухватить суть происходящего и обманывается. Или нет. Конечно, современные FIC-алгоритмы, стали на порядок лучше старых опытов, да и матрицы пошустрели, но все же проблема цветопередачи остается одной из ключевых.


Как бы то ни было, благодаря своей доступности TN+Film завоевала себе львиную долю рынка ЖК-панелей. Практически все 15-дюймовые и большинство 17-дюймовых мониторов работают на этой технологии. Сейчас технология является наиболее распространенной (а следуя логике капитала — универсальной) для бытового и офисного применения.

IPS и S-IPS

Не вожделев вытягивать зубами грузовик проблем TN-матриц, компании Hitachi и NEC предприняли попытку создать альтернативу, которая впоследствии оказалась весьма успешной, но дорогой. Впрочем, свою нишу она все же нашла. Название IPS (In-Plane Switching, в девичестве — Super TFT) отражает суть нововведения: оба электрода здесь расположены на одной подложке. Молекулы жидких кристаллов здесь не скручиваются в спираль, а поворачиваются на 90 градусов единой плоскостью, всегда перпендикулярной плоскости экрана.

Замечательным преимуществом IPS и последовавших бесчисленных усовершенствований (главное из них S-IPS) является тот факт, что экраны выдают четкий черный цвет в результате полного блокирования света перпендикулярными поляризационными фильтрами. Загорание субпиксела происходит не при отсутствии напряжения, а при его наличии; дохлые же точки черны, как смоль.

IPS-панели обеспечивают отличную цветопередачу и имеют широкие углы обзора (в силу особого расположения молекул ЖК) — порядка 170 градусов. Однако, отличное решение одних проблем привело к осложнениям с другими (и без того не идеальными, но хотя бы приемлемыми) параметрами TN:

Ни выдающейся яркости, ни контрастности IPS-матрицы не демонстрируют из-за большей площади, ссуженной электродам.
Они потребляют много энергии, отчасти из-за необходимости установки мощной лампы (чтобы свет прорывался сквозь лес электродов), отчасти из-за большего, чем у TN числа транзисторов на каждый субпиксел. Это ограничивает их использование в ноутбуках.
Время отклика у IPS обычно выше, чем у TN, особенно при переходах между близкими состояниями яркости элемента.
Дорого.

Законная ниша матриц IPS (плюс S-IPS, а также A-SFT, SA-SFT, которые продвигает компания NEC) — мониторы для профессиональной работы с изображениями диагональю от 19–20 дюймов и выше. Если цена на IPS в будущем упадет до приемлемых пределов (желательно, вместе с временем отклика), сфера их применения, естественно, значительно расширится.

читаем дальше...

Последний раз редактировалось [smart]; 30.03.2005 в 09:58.
Unforg1ven вне форума